The thalamus is a highly connected subcortical structure that relays and integrates sensory and cortical information, which is critical for coherent and accurate perceptual awareness and cognition. Thalamic dysfunction is a classical finding in schizophrenia (SZ), and resting-state functional MRI has implicated somatomotor and frontal lobe thalamic dysconnectivity. However, it remains unclear whether these findings generalize to different psychotic disorders, are confined to specific thalamic sub-regions, and how they relate to structural thalamic alterations. Within-thalamic and thalamo-cortical functional connectivity was assessed using resting-state functional MRI data obtained from patients with SZ (n = 96), bipolar disorder (BD, n = 57), and healthy controls (HC, n = 280). Further, we used thalamic sub-regions as seeds to investigate specific cortical connectivity patterns, and performed structural analyses of thalamic volume and shape. Results showed reduced within-thalamic connectivity and thalamo-frontoparietal coupling in SZ and increased thalamo-somatomotor connectivity in BD. One thalamic sub-region showed increased sensory connectivity in SZ and eight sub-regions showed reductions with frontal and posterior areas. Reduced gray matter and shape abnormalities were found in frontal-projecting regions in both SZ and BD, but did not seem to explain reduced functional connectivity. Aberrant thalamo-cortical connectivity patterns in SZ and BD supports the notion of the thalamus as a key structure in the functional connectome across the psychosis spectrum, and the frontal and somatomotor anatomical distribution is in line with the characteristic cognitive and perceptual symptoms in psychotic disorders.
Keywords: Functional connectivity; Imaging; Psychosis; Resting-state; Thalamus.