Background: Carbamoyl Phosphate Synthetase 1 deficiency (CPS1D) is a rare autosomal recessive inborn metabolic disease characterized mainly by hyperammonemia. The fatal nature of CPS1D and its similar symptoms with other urea cycle disorders (UCDs) make its diagnosis difficult, and the molecular diagnosis is hindered due to the large size of the causative gene CPS1. Therefore, the objective of the present study was to investigate the clinical applicability of exome sequencing in molecular diagnosis of CPS1D in Chinese population.
Methods: We described two Chinese neonates presented with unconsciousness and drowsiness due to deepening encephalopathy with hyperammonemia. Whole exome sequencing was performed. Candidate mutations were validated by Sanger sequencing. In-silicon analysis was processed for the pathogenicity predictions of the identified mutations.
Results: Two compound heterozygous mutations in the gene carbamoyl phosphate synthetase 1(CPS1) were identified. One is in Case 1 with two novel missense mutations (c.2537C>T, p. Pro846Leu and c.3443T>A, p.Met1148Lys), and the other one is in Case 2 with a novel missense mutation (c.1799G>A, p.Cys600Tyr) and a previously reported 12-bp deletion (c.4088_4099del, p.Leu 1363_Ile1366del). Bioinformatics deleterious predictions indicated pathogenicity of the missense mutations. Conversation analysis and homology modeling showed that the substituted amino acids were highly evolutionary conserved and necessary for enzyme stability or function.
Conclusion: The present study initially and successfully applied whole exome sequencing to the molecular diagnosis of CPS1D in Chinese neonates, indicating its applicability in cost-effective molecular diagnosis of CPS1D. Three novel pathogenic missense mutations were identified, expanded the mutational spectrum of the CPS1 gene.
Keywords: carbamoyl phosphate synthetase 1 deficiency; gene CPS1; molecular diagnosis; whole exome sequencing.
© 2017 Wiley Periodicals, Inc.