Background: The role of the circulating leukocytes in lungs and their relationship with circulating proinflammatory cytokines during ischemia-reperfusion injury is not well understood. Using ex vivo lung perfusion (EVLP) to investigate the pathophysiology of isolated lungs, we aimed to identify a therapeutic target to optimize lung preservation leading to successful lung transplantation.
Methods: Rat heart-lung blocks were placed on EVLP for 4 hours with or without a leukocyte-depleting filter (LF). After EVLP, lung grafts were transplanted, and posttransplant outcomes were compared.
Results: Lung function was significantly better in lung grafts on EVLP with a LF than in lungs on EVLP without a LF. The interleukin (IL)-6 levels in the lung grafts and EVLP perfusate were also significantly lower after EVLP with a LF. Interestingly, IL-6 levels in the perfusate did not increase after the lungs were removed from the EVLP circuit, indicating that the cells trapped by the LF were not secreting IL-6. The trapped cells were analyzed with flow cytometry to detect apoptosis and pyroptosis; 26% were pyroptotic (Caspase-1-positive). After transplantation, there was better graft function and less inflammatory response if a LF was used or a caspase-1 inhibitor was administered during EVLP.
Conclusions: Our data demonstrated that circulating leukocytes derived from donor lungs, and not circulating proinflammatory cytokines substantially impaired the quality of lung grafts through caspase-1-induced pyroptotic cell death during EVLP. Removing these cells with a LF and/or inhibiting pyroptosis of the cells can be a new therapeutic approach leading to long-term success after lung transplantation.