The study aims to investigate the effect of microRNA-34a (miR-34a) targeting Tgif2 on steroid-induced avascular necrosis of femoral head (SANFH) by regulating OPG/RANK/RANKL signaling pathway. SD rats were divided into normal control and model (RNAKL rat models) groups. The model group was further assigned into model control, negative control, miR-34a mimics and miR-34a inhibitors groups. QRT-PCR was applied to detect miR-34a, Tgif2, OPG, RANK and RNAKL mRNA expressions. Femoral head tissues were collected for Micro-CT scanning and HE staining. QRT-PCR and Western blotting were used to detect expressions of miR-34a, Tgif2, OPG, RANK, RANKL and Runx2, OPN and OC in bone tissues. Dual-luciferase reporter gene assay was used to testify the target relationship between miR-34a and Tgif2. Compared with the normal control group, the model group showed increased Tgif2, RANK and RANKL mRNA expressions, but decreased miR-34a and OPG mRNA expressions. Tgif2 mRNA expression was negatively correlated with miR-34a and OPG mRNA expressions. Micro-CT showed cystic degeneration of femoral head, with decreased bone volume/total volume (BV/TV), bone surface area/bone volume and trabecular number in the model control group compared with the normal control group. Compared with the model control group, the miR-34a mimics group showed increased BV/TV and trabecular thickness and Runx2, OPN and OC expressions, while the parameters decreased in the miR-34a inhibitors group. Compared with the normal control group, the other groups showed increased Tgif2, RANK and RANKL expressions but decreased miR-34a and OPG expressions. Compared with the model control group, Tgif2, RANK and RANKL expressions decreased and miR-34a and OPG expressions increased in the miR-34a mimics group, while the miR-34a inhibitors group had a reverse trend in contrast to the miR-34a mimics group. Tgif2 is a target gene of miR-34a. In conclusion, miR-34a can alleviate SANFH through targeting Tgif2 and further regulating OPG/RANK/RANKL signaling pathway. Impact statement miR-34a can alleviate SANFH through targeting Tgif2 and further regulating OPG/RANK/RANKL signaling pathway, which can be used as a new theoretical basis for SANFH treatment.
Keywords: MiR-34a; osteoprotegerin; receptor activator of nuclear factor Kappa B; receptor activator of nuclear factor Kappa ligand; signaling pathway; steroid-induced avascular necrosis of femoral head.