Background: Recent clinical results support the use of new immune checkpoint blockers (ICB), such as anti-PD-1 (e.g. nivolumab and pembrolizumab) and anti-PD-L1 antibodies. Radiological evaluation of ICB efficacy during therapy is challenging due to tumor immune infiltration. Changes of circulating tumor DNA (ctDNA) levels during therapy could be a promising tool for very accurate monitoring of treatment efficacy, but data are lacking with ICB.
Patients and methods: This prospective pilot study was conducted in patients with nonsmall cell lung cancer, uveal melanoma, or microsatellite-instable colorectal cancer treated by nivolumab or pembrolizumab monotherapy at Institut Curie. ctDNA levels were assessed at baseline and after 8 weeks (w8) by bidirectional pyrophosphorolysis-activated polymerization, droplet digital PCR or next-generation sequencing depending on the mutation type. Radiological evaluation of efficacy of treatment was carried out by using immune-related response criteria.
Results: ctDNA was detected at baseline in 10 out of 15 patients. At w8, a significant correlation (r = 0.86; P = 0.002) was observed between synchronous changes in ctDNA levels and tumor size. Patients in whom ctDNA levels became undetectable at w8 presented a marked and lasting response to therapy. ctDNA detection at w8 was also a significant prognostic factor in terms of progression-free survival (hazard ratio = 10.2; 95% confidence interval 2.5-41, P < 0.001) and overall survival (hazard ratio = 15; 95% confidence interval 2.5-94.9, P = 0.004).
Conclusion: This proof-of-principle study is the first to demonstrate that quantitative ctDNA monitoring is a valuable tool to assess tumor response in patients treated with anti-PD-1 drugs.
Keywords: biomarker; circulating tumor DNA; immune therapy; nivolumab; pembrolizumab.
© The Author 2017. Published by Oxford University Press on behalf of the European Society for Medical Oncology. All rights reserved. For permissions, please email: [email protected].