Symbolic number - or digit - comparison has been a central tool in the domain of numerical cognition for decades. More recently, individual differences in performance on this task have been shown to robustly relate to individual differences in more complex math processing - a result that has been replicated across many different age groups. In this study, we 'unpack' the underlying components of digit comparison (i.e. digit identification, digit to number-word matching, digit ordering and general comparison) in a sample of adults. In a first experiment, we showed that digit comparison performance was most strongly related to digit ordering ability - i.e., the ability to judge whether symbolic numbers are in numerical order. Furthermore, path analyses indicated that the relation between digit comparison and arithmetic was partly mediated by digit ordering and fully mediated when non-numerical (letter) ordering was also entered into the model. In a second experiment, we examined whether a general order working memory component could account for the relation between digit comparison and arithmetic. It could not. Instead, results were more consistent with the notion that fluent access and activation of long-term stored associations between numbers explains the relation between arithmetic and both digit comparison and digit ordering tasks.
Keywords: Arithmetic; Digit comparison; Long-term memory; Order processing; Working memory.
Copyright © 2017 Elsevier B.V. All rights reserved.