Mild cognitive impairment (MCI) is characterised by subjective and objective memory impairment in the absence of dementia. MCI is a strong predictor for the development of Alzheimer's disease, and may represent an early stage in the disease course in many cases. A standard task used in the diagnosis of MCI is verbal fluency, where participants produce as many items from a specific category (e.g., animals) as possible. Verbal fluency performance is typically analysed by counting the number of items produced. However, analysis of the semantic path of the items produced can provide valuable additional information. We introduce a cognitive model that uses multiple types of lexical information in conjunction with a standard memory search process. The model used a semantic representation derived from a standard semantic space model in conjunction with a memory searching mechanism derived from the Luce choice rule (Luce, 1977). The model was able to detect differences in the memory searching process of patients who were developing MCI, suggesting that the formal analysis of verbal fluency data is a promising avenue to examine the underlying changes occurring in the development of cognitive impairment. (PsycINFO Database Record
(c) 2018 APA, all rights reserved).