Radical Generation from the Gas-Phase Activation of Ionized Lipid Ozonides

J Am Soc Mass Spectrom. 2017 Jul;28(7):1345-1358. doi: 10.1007/s13361-017-1649-4. Epub 2017 May 8.

Abstract

Reaction products from the ozonolysis of unsaturated lipids at gas-liquid interfaces have the potential to significantly influence the chemical and physical properties of organic aerosols in the atmosphere. In this study, the gas-phase dissociation behavior of lipid secondary ozonides is investigated using ion-trap mass spectrometry. Secondary ozonides were formed by reaction between a thin film of unsaturated lipids (fatty acid methyl esters or phospholipids) with ozone before being transferred to the gas phase as [M + Na]+ ions by electrospray ionization. Activation of the ionized ozonides was performed by either energetic collisions with helium buffer-gas or laser photolysis, with both processes yielding similar product distributions. Products arising from the decomposition of the ozonides were characterized by their mass-to-charge ratio and subsequent ion-molecule reactions. Product assignments were rationalized as arising from initial homolysis of the ozonide oxygen-oxygen bond with subsequent decomposition of the nascent biradical intermediate. In addition to classic aldehyde and carbonyl oxide-type fragments, carbon-centered radicals were identified with a number of decomposition pathways that indicated facile unimolecular radical migration. These findings reveal that photoactivation of secondary ozonides formed by the reaction of aerosol-bound lipids with tropospheric ozone may initiate radical-mediated chemistry within the particle resulting in surface modification. Graphical Abstract ᅟ.

Keywords: Aerosols; Collision-induced dissociation; Electrospray ionization; Free radical; Ozonolysis; Photo dissociation; Secondary ozonide.