Open biomass burning in Peninsula Malaysia, Sumatra, and parts of the Indochinese region is a major source of transboundary haze pollution in the Southeast Asia. To study the influence of haze on rainwater chemistry, a short-term investigation was carried out during the occurrence of a severe haze episode from March to April 2014. Rainwater samples were collected after a prolonged drought and analyzed for heavy metals and major ion concentrations using inductively coupled plasma mass spectroscopy (ICP-MS) and ion chromatography (IC), respectively. The chemical composition and morphology of the solid particulates suspended in rainwater were examined using a scanning electron microscope coupled with energy-dispersive X-ray spectroscopy (SEM-EDS). The dataset was further interpreted using enrichment factors (EF), statistical analysis, and a back trajectory (BT) model to find the possible sources of the particulates and pollutants. The results show a drop in rainwater pH from near neutral (pH 6.54) to acidic (<pH 4.00) during the haze to non-haze transitional period, suggesting that the deposition rate of sulfate and nitrate in the atmosphere via the precipitation process was relatively lower compared to the mineral components. Zinc, nitrate, and calcium, which were the predominant elements in the first rainwater samples. Besides, the results of the SEM-EDS indicated that the zinc was possibly originated from anthropogenic activities which are consistent with the results obtained from EF. The BT model showed that pollutants transported from the mainland of Indo-China and the marine region in the South China Sea were responsible for the high pollution event in the study area. These findings can be useful in identifying contributions of pollutants from single or multiple sources in rainwater samples during haze episodes.
Keywords: Air pollution; Biomass burning; Drought; Malaysia; Rainwater; Trace elements.