Narcolepsy-cataplexy is a debilitating disorder of sleep/wakefulness caused by a loss of orexin-producing neurons in the lateroposterior hypothalamus. Genetic or pharmacologic orexin replacement ameliorates symptoms in mouse models of narcolepsy-cataplexy. We have recently discovered a potent, nonpeptide OX2R-selective agonist, YNT-185. This study validates the pharmacological activity of this compound in OX2R-transfected cells and in OX2R-expressing neurons in brain slice preparations. Intraperitoneal, and intracerebroventricular, administration of YNT-185 suppressed cataplexy-like episodes in orexin knockout and orexin neuron-ablated mice, but not in orexin receptor-deficient mice. Peripherally administered YNT-185 also promotes wakefulness without affecting body temperature in wild-type mice. Further, there was no immediate rebound sleep after YNT-185 administration in active phase in wild-type and orexin-deficient mice. No desensitization was observed after repeated administration of YNT-185 with respect to the suppression of cataplexy-like episodes. These results provide a proof-of-concept for a mechanistic therapy of narcolepsy-cataplexy by OX2R agonists.
Keywords: G protein-coupled receptors; electroencephalography; electromyography; excessive daytime sleepiness; neuropeptide.