Human neutrophil elastase impacts on atherosclerotic plaque stability by inducing apoptosis in endothelial cells. Our aim was to investigate the proapoptotic mechanism of elastase on endothelial cells and to evaluate the presence of elastase in human plaque material. Human endothelial cells were treated with purified human neutrophil elastase. Apoptosis was assayed by capsase-3/7 activation, TUNEL, and sub-G1 assay. Activation of unfolded protein response (UPR) effector molecules binding Ig protein, soluble X-binding protein-1, protein kinase RNA-like ER kinase (PERK), and C/EBP-homologous protein (CHOP) was analyzed by RT-PCR, immunocytochemistry, and Western blot. Genetic silencing of CHOP was achieved by small interfering RNA. Elastase induces autophagic-apoptotic forms of endothelial cell death in a time- and dose-dependent manner, in conjunction with a significant increase in phosphorylation/expression of the canonical UPR-activation markers PERK and CHOP. By using CHOP knockdown, we identified CHOP as a key mediator of elastase-induced endothelial cell death. Immunohistochemical analysis of human rupture-prone plaque specimens confirmed the presence of elastase and colocalization with apoptosis. We have demonstrated for the first time that the PERK-CHOP branch of the UPR is causally involved in elastase-induced apoptosis of endothelial cells. Ex vivo analysis of human rupture-prone plaques confirmed the presence of elastase and its colocalization with markers of apoptosis. This novel role of elastase underlines the potential of combined targeting of elastase and endoplasmic reticulum stress in the prevention of plaque progression and cardiovascular events.-Grechowa, I., Horke, S., Wallrath, A., Vahl, C.-F., Dorweiler, B. Human neutrophil elastase induces endothelial cell apoptosis by activating the PERK-CHOP branch of the unfolded protein response.
Keywords: atherosclerosis; endoplasmic reticulum stress; human plaque.
© FASEB.