The activity and efficacy of Aurora inhibitors have been reported in a wide range of cancer types. The most prominent Aurora inhibitor is alisertib, an investigational Aurora inhibitor that has been the subject of more than 30 clinical trials. Alisertib has inhibitory activity against both Aurora A and B, although it is considered to be primarily an Aurora A inhibitor in vivo Here, we show that alisertib inhibits both Aurora A and B in vivo in preclinical models of HPV-driven cervical cancer, and that it is the inhibition of Aurora A and B that provides the selectivity and efficacy of this drug in vivo in this disease setting. We also present formal evidence that alisertib requires progression through mitosis for its efficacy, and that it is unlikely to combine with drugs that promote a G2 DNA damage checkpoint response. This work demonstrates that inhibition of Aurora A and B is required for effective control of HPV-driven cancers by Aurora kinase inhibitors. Mol Cancer Ther; 16(9); 1934-41. ©2017 AACR.
©2017 American Association for Cancer Research.