Honey is a precious natural product that is marketed with a wide range of nutritional and medicinal properties. However, it is also a product subjected to frequent adulteration through mislabeling and mixing with cheaper and lower-quality honeys and various sugar syrups. In that sense, honey authentication regarding its genuine botanical and geographical origins, as well as the detection of any adulteration, is essential in order to protect consumer health and to avoid competition that could create a destabilized market. Various analytical techniques have been developed to detect adulterations in honey, including measuring the ratios of stable isotopes (mostly 13C/12C) and the use of different spectroscopic, chromatographic, and electrochemical methods. This review aims to provide a cross-section of contemporary analytical methods used for the determination of honey authenticity in order to help the scientific community engaged in the field of honey chemistry make appropriate choices and select the best applications that should lead to improvements in the detection and elimination of fraudulent practices in honey manufacturing.