The Balkan Peninsula is one of the largest and most important European glacial refugia. However, the evolutionary history and phylogeographic pattern of temperate tree species that survived in the Balkans glacial refugia and their contribution to the genetic structure of the current population in the Carpathian Mountains remains poorly understood. Using polymerase chain reaction - restriction fragment length polymorphism (PCR-RFLP), and extensive population sampling, we explored the phylogeographic pattern of Carpinus betulus in both the Balkan Peninsula and the Carpathian region. We aimed to determine the locations of potential glacial refugia, in order to delineate post-glacial colonization routes, and also to test if northern cryptic refugia had persisted during the Last Glacial Maximum (LGM). Our results provide strong support for the existence of multiple refugia similar to the 'refugia-within-refugia' scenario, which would suggest that Carpinus betulus has experienced a complex evolutionary history. In agreement with pollen data, our findings corroborate with previous hypotheses suggesting that hornbeam has a distinct postglacial evolution in the southeast of Europe (Carpathians and Balkan Peninsula) compared with that in Western Europe. Three postglacial re-colonization routes, from three distinct effective glacial refugia: (1) the Dinaric Alps; (2) the Pirin and Rhodope Mountains and (3) the Strandzha Mountains, were detected within the Balkan Peninsula. The pattern of cpDNA haplotypes distribution across the Ukrainian Carpathians revealed a "suture zone", which is a consequence of contact due to postglacial re-colonization between hornbeam populations originating from all three effective glacial refugia. The peculiar haplotype geographical structure found in C. betulus and the identified multiple glacial refugia in the Balkans may have direct consequences in the management and conservation of hornbeam forest genetic resources.
Keywords: Genetic diversity; Hornbeam forests; PCR-RFLP; Phylogeography; Refugia; cpDNA.
Copyright © 2017 Elsevier B.V. All rights reserved.