This study investigated oyster infection dynamics by different strains of Vibrio aestuarianus isolated before and after the apparent re-emergence of this pathogen observed in France in 2011. We conducted experiments to compare minimal infective dose, lethal dose 50 and bacterial shedding for six V. aestuarianus strains. Whatever the strain used, mortality was induced in juvenile oysters by intramuscular injection and reached 90-100% of mortality within 5 days. Moreover, bacterial shedding was comparable among strains and reached its maximum after 20 h (≈10 EXP5 bacteria/mL/animal). Similarly, our first estimations of lethal dose 50 were comparable among strains (minimal infective dose around 0.4 × 10EXP5 bacteria/mL and LD50 around 10EXP5 bacteria/mL) by using seawater containing freshly shed bacteria. These results indicate that, at least with these criteria, despite V. aestuarianus strains genetic diversity, the disease process is similar. The strains isolated after the apparent re-emergence of the bacteria in 2011, do not present a more acute virulence phenotype than the reference strains isolated between 2002 and 2007. Finally, our study provides original and noteworthy data indicating that infected oysters shed bacteria at a level above the threshold of LD50 a few days before they die, meaning that infection is expected to spread in a susceptible population.