Background: Frontal aslant tract (FAT) is a white matter bundle connecting the pre-supplementary motor area (pre-SMA) and the supplementary motor area (SMA) with the inferior frontal gyrus (IFG). The purpose of the present study was to evaluate the anatomical variability of FAT.
Materials and methods: Total number of fibres and the lateralisation index (LI) were calculated. We attempted to find factors contributing to the diversity of FAT regarding IFG terminations to the pars opercularis (IFG-Op) and to the pars triangularis (IFG-Tr). Magnetic resonance imaging of adult patients with diffusion tensor imaging (DTI) with total number of 98 hemispheres composed a cohort. V-shaped operculum was the most common (60.5%).
Results: Total number of FAT fibres had widespread and unimodal distribution (6 to 1765; median: 160). Left lateralisation was noted in 64.3% of cases and was positively correlated with total number of FAT fibres and the bundle projecting to IFG-Op (p < 0.01). LI correlated with total number of FAT fibres (r = 0.43, p < 0.01). FAT projected predominantly to IFG-Op (88.9%; 88 of 99). Only in 3 (3.1%) cases more fibres terminated in IFG-Tr than in IFG-Op. Total number of FAT fibres and number of fibres terminating at IFG-Op did not correlate with the ratio of fibre numbers: FAT/IFG-Op, FAT/IFG-Tr and IFG-Op/IFG-Tr (p > 0.05). The greater total number of fibres to IFG-Tr was, the higher were the ratios of IFG-Tr/ /FAT (r = 0.57, p < 0.01) and IFG-Tr/IFG-Op (r = 0.32, p = 0.04).
Conclusions: Among the IFG, the major termination of FAT is IFG-Op. Whereas the IFG-Tr projection seems to be related to the expansion of the entire FAT bundle regardless of side, domination and handedness. Nevertheless, FAT features a significant anatomical variability which cannot be explained in terms of DTI findings.
Keywords: diffusion tensor imaging; diffusion tensor tractography; frontal aslant tract; frontal lobe; operculum; white matter.