Superconducting gap structure in the electron doped BiS2-based superconductor

J Phys Condens Matter. 2017 Jul 5;29(26):265602. doi: 10.1088/1361-648X/aa7189.

Abstract

The influence of electron doping on semimetallic SrFBiS2 has been investigated by means of resistivity, zero and transverse - field (ZF/TF) muon spin relaxation/rotation (μSR) experiments. SrFBiS2 is semimetallic in its normal state and small amounts of La doping results in bulk superconductivity at 2.8 K, at ambient pressure. The temperature dependence of the superfluid density as determined by TF-μSR can be best modelled by an isotropic s - wave type superconducting gap. We have estimated the magnetic penetration depth [Formula: see text] nm, superconducting carrier density [Formula: see text] carriers m-3 and effective-mass enhancement m * = 1.558 m e. Additionally, there is no clear sign of the occurrence of spontaneous internal magnetic fields below [Formula: see text], which implies that the superconducting state in this material can not be categorized by the broken time-reversal symmetry which is in agreement with the previous theoretical prediction.