Fibroblast growth factor (FGF) 8b interacts with its receptors and promotes angiogenesis in hormone‑dependent tumors. In the present study, we demonstrated that a short peptide, termed 8b‑13, which mimics part of the FGF8b structure, significantly inhibited the proliferation and migration of human umbilical vein endothelial cells (HUVECs) triggered by FGF8b using 3‑(4,5‑dimethylthiazol‑2‑yl)‑2,5‑diphenyltetrazolium bromide (MTT), flow cytometry and an in vitro scratch assay. In addition, the findings from western blotting and reverse transcription‑quantitative polymerase chain reaction revealed that 8b‑13 appeared to counteract the effects of FGF8b on the expression of cyclin D1, the activation of signaling cascades, and the expression of proangiogenic factors; these actions may be involved in the mechanism underlying the inhibitory effects of 8b‑13 on FGF8b‑induced HUVEC proliferation and migration. The present results suggested that 8b‑13 may be considered a potent FGF8b antagonist with antiangiogenic activity, and may have potential as a novel therapeutic agent for the treatment of cancer characterized by abnormal FGF8b upregulation.