Disruption of the Accidental Dirac Semimetal State in ZrTe_{5} under Hydrostatic Pressure

Phys Rev Lett. 2017 May 19;118(20):206601. doi: 10.1103/PhysRevLett.118.206601. Epub 2017 May 19.

Abstract

We study the effect of hydrostatic pressure on the magnetotransport properties of zirconium pentatelluride. The magnitude of resistivity anomaly gets enhanced with increasing pressure, but the transition temperature T^{*} is insensitive to it up to 2.5 GPa. In the case of H∥b, the quasilinear magnetoresistance decreases drastically from 3300% (9 T) at ambient pressure to 230% (9 T) at 2.5 GPa. Besides, the change of the quantum oscillation phase from topological nontrivial to trivial is revealed around 2 GPa. Both demonstrate that the pressure breaks the accidental Dirac node in ZrTe_{5}. For H∥c, in contrast, subtle changes can be seen in the magnetoresistance and quantum oscillations. In the presence of pressure, ZrTe_{5} evolves from a highly anisotropic to a nearly isotropic electronic system, which accompanies the disruption of the accidental Dirac semimetal state. It supports the assumption that ZrTe_{5} is a semi-3D Dirac system with linear dispersion along two directions and a quadratic one along the third.