We study the effect of hydrostatic pressure on the magnetotransport properties of zirconium pentatelluride. The magnitude of resistivity anomaly gets enhanced with increasing pressure, but the transition temperature T^{*} is insensitive to it up to 2.5 GPa. In the case of H∥b, the quasilinear magnetoresistance decreases drastically from 3300% (9 T) at ambient pressure to 230% (9 T) at 2.5 GPa. Besides, the change of the quantum oscillation phase from topological nontrivial to trivial is revealed around 2 GPa. Both demonstrate that the pressure breaks the accidental Dirac node in ZrTe_{5}. For H∥c, in contrast, subtle changes can be seen in the magnetoresistance and quantum oscillations. In the presence of pressure, ZrTe_{5} evolves from a highly anisotropic to a nearly isotropic electronic system, which accompanies the disruption of the accidental Dirac semimetal state. It supports the assumption that ZrTe_{5} is a semi-3D Dirac system with linear dispersion along two directions and a quadratic one along the third.