Resonant x-ray scattering at the Dy M_{5} and Ni L_{3} absorption edges was used to probe the temperature and magnetic field dependence of magnetic order in epitaxial LaNiO_{3}-DyScO_{3} superlattices. For superlattices with 2 unit cell thick LaNiO_{3} layers, a commensurate spiral state develops in the Ni spin system below 100 K. Upon cooling below T_{ind}=18 K, Dy-Ni exchange interactions across the LaNiO_{3}-DyScO_{3} interfaces induce collinear magnetic order of interfacial Dy moments as well as a reorientation of the Ni spins to a direction dictated by the strong magnetocrystalline anisotropy of Dy. This transition is reversible by an external magnetic field of 3 T. Tailored exchange interactions between rare-earth and transition-metal ions thus open up new perspectives for the manipulation of spin structures in metal-oxide heterostructures and devices.