Reduced Graphene Oxide/Alumina, A Good Accelerant for Cellulose-Based Artificial Nacre with Excellent Mechanical, Barrier, and Conductive Properties

ACS Nano. 2017 Jun 27;11(6):5717-5725. doi: 10.1021/acsnano.7b01221. Epub 2017 Jun 12.

Abstract

In this article, a simple strategy was employed to fabricate bioinspired hybrid composite with carboxymethyl cellulose (CMC), graphene oxide, and reduced graphene oxide/alumina (rGO/Al) by a facile solution casting method. The tensile strength and toughness of rGO/Al-CMC-GO can reach 586.6 ± 12 MPa, 12.1 ± 0.44 MJm-3, respectively, due to the interface strengthening of alumina, which is 1.43 and 12 times higher than steel and about 4.3 and 6.7 times that of nature nacre. The artificial nacre hybrid composite is conductive due to the introduction of rGO/Al on the surface. Interestingly this structure can also be coated on the surface of cotton thread to give the thread good mechanical performance and conductivity. Additionally, the artificial nacre has better fire shielding and gas barrier properties. The oxygen permeability (OP) for 1% rGO/Al-CMC decreased from 0.0265 to 0.003 mLμm m-2 day-1 kpa-1, the water vapor permeability (WVP) decreased from 0.363 to 0.205 gmmm-2 day-1 kpa-1 when the concentration increased from 1% rGO/Al to 6% rGO/Al. It is believed this work provided a simple and feasible strategy to fabricate ultrastrong and ultratough graphene-based artificial nacre multifunctional materials.

Keywords: barrier properties; conductivity; reduced graphene oxide and alumina; ultrastrong; ultratough.

Publication types

  • Research Support, Non-U.S. Gov't