A protein-protein interaction dictates Borrelial infectivity

Sci Rep. 2017 Jun 7;7(1):2932. doi: 10.1038/s41598-017-03279-7.

Abstract

Two Borrelia burgdorferi interacting proteins, BB0238 and BB0323, play distinct roles in pathogen biology and infectivity although a significance of their interaction remained enigmatic. Here we identified the polypeptide segment essential for BB0238-BB0323 interaction and examined how it supports spirochete infectivity. We show that the interaction region in BB0323 requires amino acid residues 22-200, suggesting that the binding encompasses discontinuous protein segments. In contrast, the interaction region in BB0238 spans only 11 amino acids, residues 120-130. A deletion of these 11 amino acids neither alters the overall secondary structure of the protein, nor affects its stability or oligomerization property, however, it reduces the post-translational stability of the binding partner, BB0323. Mutant B. burgdorferi isolates producing BB0238 lacking the 11-amino acid interaction region were able to persist in ticks but failed to transmit to mice or to establish infection. These results suggest that BB0238-BB0323 interaction is critical for post-translational stability of BB0323, and that this interaction is important for mammalian infectivity and transmission of B. burgdorferi. We show that saturation or inhibition of BB0238-BB0323 interaction could be studied in a luciferase assay, which could be amenable for future identification of small molecule inhibitors to combat B. burgdorferi infection.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Amino Acid Sequence
  • Animals
  • Bacterial Proteins / chemistry
  • Bacterial Proteins / genetics
  • Bacterial Proteins / metabolism*
  • Binding Sites
  • Borrelia burgdorferi / physiology*
  • Disease Models, Animal
  • Host-Pathogen Interactions*
  • Lyme Disease / metabolism*
  • Lyme Disease / microbiology
  • Mice
  • Protein Binding
  • Protein Interaction Domains and Motifs

Substances

  • Bacterial Proteins