Murine Short Axis Ventricular Heart Slices for Electrophysiological Studies

J Vis Exp. 2017 Jun 4:(124):55725. doi: 10.3791/55725.

Abstract

Murine cardiomyocytes have been extensively used for in vitro studies of cardiac physiology and new therapeutic strategies. However, multicellular preparations of dissociated cardiomyocytes are not representative of the complex in vivo structure of cardiomyocytes, non-myocytes and extracellular matrix, which influences both mechanical and electrophysiological properties of the heart. Here we describe a technique to prepare viable ventricular slices of adult mouse hearts with a preserved in vivo like tissue structure, and demonstrate their suitability for electrophysiological recordings. After excision of the heart, ventricles are separated from the atria, perfused with Ca2+-free solution containing 2,3-butanedione monoxime and embedded in a 4% low-melt agarose block. The block is placed on a microtome with a vibrating blade, and tissue slices with a thickness of 150-400 µm are prepared keeping the vibration frequency of the blade at 60-70 Hz and moving the blade forward as slowly as possible. Thickness of the slices depends on the further application. Slices are stored in ice cold Tyrode's solution with 0.9 mM Ca2+ and 2,3-butanedione monoxime (BDM) for 30 min. Afterwards, slices are transferred to 37 °C DMEM for 30 min to wash out the BDM. Slices can be used for electrophysiological studies with sharp electrodes or micro electrode arrays, for force measurements to analyze contractile function or to investigate the interaction of transplanted stem cell-derived cardiomyocytes and host tissue. For sharp electrode recordings, a slice is placed into a 3 cm cell culture dish on the heating plate of an inverted microscope. The slice is stimulated with a unipolar electrode, and intracellular action potentials of cardiomyocytes within the slice are recorded with a sharp glass electrode.

Publication types

  • Video-Audio Media

MeSH terms

  • Action Potentials / physiology
  • Animals
  • Diacetyl / analogs & derivatives
  • Diacetyl / pharmacology
  • Electrodes
  • Electrophysiological Phenomena
  • Induced Pluripotent Stem Cells / transplantation
  • Mice
  • Myocytes, Cardiac / physiology
  • Ventricular Function*

Substances

  • diacetylmonoxime
  • Diacetyl