Resting state connectivity between default mode network and insula encodes acute migraine headache

Cephalalgia. 2018 Apr;38(5):846-854. doi: 10.1177/0333102417715230. Epub 2017 Jun 12.

Abstract

Background Previous functional MRI studies have revealed that ongoing clinical pain in different chronic pain syndromes is directly correlated to the connectivity strength of the resting default mode network (DMN) with the insula. Here, we investigated seed-based resting state DMN-insula connectivity during acute migraine headaches. Methods Thirteen migraine without aura patients (MI) underwent 3 T MRI scans during the initial six hours of a spontaneous migraine attack, and were compared to a group of 19 healthy volunteers (HV). We evaluated headache intensity with a visual analogue scale and collected seed-based MRI resting state data in the four core regions of the DMN: Medial prefrontal cortex (MPFC), posterior cingulate cortex (PCC), and left and right inferior parietal lobules (IPLs), as well as in bilateral insula. Results Compared to HV, MI patients showed stronger functional connectivity between MPFC and PCC, and between MPFC and bilateral insula. During migraine attacks, the strength of MPFC-to-insula connectivity was negatively correlated with pain intensity. Conclusion We show that greater subjective intensity of pain during a migraine attack is associated with proportionally weaker DMN-insula connectivity. This is at variance with other chronic extra-cephalic pain disorders where the opposite was found, and may thus be a hallmark of acute migraine head pain.

Keywords: Brain networks; insula; magnetic resonance imaging; migraine; seed-based resting state.

MeSH terms

  • Acute Pain / diagnostic imaging*
  • Acute Pain / physiopathology
  • Adult
  • Brain Mapping
  • Cerebral Cortex / diagnostic imaging*
  • Cerebral Cortex / physiopathology
  • Cohort Studies
  • Epilepsy
  • Female
  • Gyrus Cinguli / diagnostic imaging*
  • Gyrus Cinguli / physiopathology
  • Humans
  • Magnetic Resonance Imaging
  • Middle Aged
  • Migraine Disorders / diagnostic imaging*
  • Migraine Disorders / physiopathology
  • Parietal Lobe / diagnostic imaging*
  • Parietal Lobe / physiopathology
  • Prefrontal Cortex / diagnostic imaging*
  • Prefrontal Cortex / physiopathology
  • Young Adult