On the phonon dissipation contribution to nanoscale friction by direct contact

Sci Rep. 2017 Jun 12;7(1):3242. doi: 10.1038/s41598-017-03046-8.

Abstract

The friction phenomenon is a ubiquitous manifestation of nature. Models considering phononic, electronic, magnetic, and electrostatic interactions are invoked to explain the fundamental forces involved in the friction phenomenon. In order to establish the incidence of the phonon prompting at the nanoscale friction by direct contact, we study a diamond spherical dome sliding on carbon thin films containing different amount of deuterium and hydrogen. The friction coefficient decreases by substituting hydrogen by deuterium atoms. This result is consistent with an energy dissipation vibration local mechanism from a disordered distribution of bond terminators.

Publication types

  • Research Support, Non-U.S. Gov't