Advances in our understanding of stem cells, gene editing, prenatal imaging and fetal interventions have opened up new opportunities for the treatment of congenital diseases either through in-utero stem cell transplantation or in-utero gene therapy. Improvements in ultrasound-guided access to the fetal vasculature have also enhanced the safety and efficacy of cell delivery. The fetal environment offers accessible stem cell niches, localized cell populations with large proliferative potential, and an immune system that is able to acquire donor-specific tolerance. In-utero therapy seeks to take advantage of these factors and has the potential to cure diseases prior to the onset of symptoms, a strategy that offers substantial social and economic benefits. In this article, we examine previous studies in animal models as well as clinical attempts at in-utero therapy. We also discuss the barriers to successful in-utero therapy and future strategies for overcoming these obstacles.
Keywords: Fetal immunologic tolerance; Hematopoietic stem cells; In-utero gene therapy; In-utero transplantation; Prenatal gene therapy; Prenatal stem cell therapy; Stem cell niche.
Copyright © 2017 Elsevier Ltd. All rights reserved.