In this work, we aimed to develop new materials to reduce the secondary injuries which can be imparted when replacing wound dressings. Electrospun fibers based on the thermoresponsive polymer poly(N-isopropylacrylamide) (PNIPAAm), poly(l-lactic acid-co-ɛ-caprolactone) (PLCL), and the antibiotic ciprofloxacin (CIF) were prepared. The water contact angle of fibers made from a blend of PNIPAAm and PLCL changed dramatically when the temperature was increased above 32°C. Sustained release of CIF from the formulations was observed over >200h. Moreover, L929 fibroblasts could proliferate on the fibers, indicating their biocompatibility. The CIF-loaded fibers were found to have potent antibacterial activity against E. coli and S. aureus. In vivo tests on rats indicated that CIF-loaded thermosensitive fibers have enhanced healing performance compared to CIF-loaded PLCL fibers or a commercial gauze. Electrospun PNIPAAm/PLCL fibers loaded with CIF thus have great promise in the development of new wound dressing materials.
Keywords: Antibacterial; Electrospinning; PNIPAAm; Thermosensitive; Wound dressing.
Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.