Immune modulation of the tumor microenvironment has been reported to participate in the therapeutic efficacy of many chemotherapeutic agents. Recently, we reported that liposomal encapsulation of oxaliplatin (l-OHP) within PEGylated liposomes conferred a superior antitumor efficacy to free l-OHP in murine colorectal carcinoma-bearing mice through permitting preferential accumulation of the encapsulated drug within tumor tissue. However, the contribution of the immune-modulatory properties of liposomal l-OHP and/or free l-OHP to the overall antitumor efficacy was not elucidated. In the present study, therefore, we investigated the effect of liposomal encapsulation of l-OHP within PEGylated liposomes on the antitumor immunity in both immunocompetent and immunodeficient mice. Liposomal l-OHP significantly suppressed the growth of tumors implanted in immunocompetent mice, but not in immunodeficient mice. In immunocompetent mice, liposomal l-OHP increased the tumor MHC-1 level and preserved antitumor immunity through decreasing the number of immune suppressor cells, including regulatory T cells, myeloid-derived suppressor cells, and tumor-associated macrophages, which collectively suppress CD8+ T cell-mediated tumor cells killing. In contrast, free l-OHP ruined antitumor immunity. These results suggest that the antitumor efficacy of liposomal l-OHP is attributed, on the one hand, to its immunomodulatory effect on tumor immune microenvironment that is superior to that of free l-OHP, and on the other hand, to its direct cytotoxic effect on tumor cells.
Keywords: Antitumor immunity; drug delivery system; immunomodulation; liposome; oxaliplatin.
© 2017 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.