Objective: There is growing international interest in advancing 'the tobacco endgame'. We use New Zealand (Smokefree goal for 2025) as a case study to model the impacts on smoking prevalence (SP), health gains (quality-adjusted life-years (QALYs)) and cost savings of (1) 10% annual tobacco tax increases, (2) a tobacco-free generation (TFG), (3) a substantial outlet reduction strategy, (4) a sinking lid on tobacco supply and (5) a combination of 1, 2 and 3.
Methods: Two models were used: (1) a dynamic population forecasting model for SP and (2) a closed cohort (population alive in 2011) multistate life table model (including 16 tobacco-related diseases) for health gains and costs.
Results: All selected tobacco endgame strategies were associated with reductions in SP by 2025, down from 34.7%/14.1% for Māori (indigenous population)/non-Māori in 2011 to 16.0%/6.8% for tax increases; 11.2%/5.6% for the TFG; 17.8%/7.3% for the outlet reduction; 0% for the sinking lid; and 9.3%/4.8% for the combined strategy. Major health gains accrued over the remainder of the 2011 population's lives ranging from 28 900 QALYs (95% Uncertainty Interval (UI)): 16 500 to 48 200; outlet reduction) to 282 000 QALYs (95%UI: 189 000 to 405 000; sinking lid) compared with business-as-usual (3% discounting). The timing of health gain and cost savings greatly differed for the various strategies (with accumulated health gain peaking in 2040 for the sinking lid and 2070 for the TFG).
Conclusions: Implementing endgame strategies is needed to achieve tobacco endgame targets and reduce inequalities in smoking. Given such strategies are new, modelling studies provide provisional information on what approaches may be best.
Keywords: QALYs; health system costs; simulation model; smoking prevalence; tobacco endgame.
© Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.