Charlson comorbidity index derived from chart review or administrative data: agreement and prediction of mortality in intensive care patients

Clin Epidemiol. 2017 Jun 2:9:311-320. doi: 10.2147/CLEP.S133624. eCollection 2017.

Abstract

Purpose: This study compared the Charlson comorbidity index (CCI) information derived from chart review and administrative systems to assess the completeness and agreement between scores, evaluate the capacity to predict 30-day and 1-year mortality in intensive care unit (ICU) patients, and compare the predictive capacity with that of the Simplified Acute Physiology Score (SAPS) II model.

Patients and methods: Using data from 959 patients admitted to a general ICU in a Norwegian university hospital from 2007 to 2009, we compared the CCI score derived from chart review and administrative systems. Agreement was assessed using % agreement, kappa, and weighted kappa. The capacity to predict 30-day and 1-year mortality was assessed using logistic regression, model discrimination with the c-statistic, and calibration with a goodness-of-fit statistic.

Results: The CCI was complete (n=959) when calculated from chart review, but less complete from administrative data (n=839). Agreement was good, with a weighted kappa of 0.667 (95% confidence interval: 0.596-0.714). The c-statistics for categorized CCI scores from charts and administrative data were similar in the model that included age, sex, and type of admission: 0.755 and 0.743 for 30-day mortality, respectively, and 0.783 and 0.775, respectively, for 1-year mortality. Goodness-of-fit statistics supported the model fit.

Conclusion: The CCI scores from chart review and administrative data showed good agreement and predicted 30-day and 1-year mortality in ICU patients. CCI combined with age, sex, and type of admission predicted mortality almost as well as the physiology-based SAPS II.

Keywords: Charlson comorbidity index; SAPS II; agreement; calibration; case-mix adjustment; comorbidity; discrimination; epidemiology; intensive care unit; mortality; prediction.