miR-138 inhibits gastric cancer growth by suppressing SOX4

Oncol Rep. 2017 Aug;38(2):1295-1302. doi: 10.3892/or.2017.5745. Epub 2017 Jun 22.

Abstract

MicroRNA-138 (miR-138) has been reported to be downregulated and function as a tumor suppressor in several cancers. However, the role and molecular mechanisms of miR-138 in the progression of gastric cancer (GC) remain to be clarified. The aim of the present study was to determine the role of miR-138 in GC progression. In the present study we found that miR-138 expression was downregulated in GC tissues and cell lines. Statistical analysis demonstrated that low expression levels of miR-138 were associated with advanced tumor-node-metastasis (TNM) stage, and lymph node metastasis. Function assays demonstrated that overexpression of miR-138 impaired GC cell proliferation, colony formation, migration and invasion in vitro, as well as suppressed tumor growth in vivo. Through reporter gene, qRT-PCR and western blot assays, SRY-related high mobility group box 4 (SOX4), a master mediator in epithelial-mesenchymal transition (EMT), was confirmed to be a direct target of miR-138 in GC cells. Western blot assay revealed that miR-138 overexpression inhibited EMT procession in GC cells by upregulation of epithelial marker E-cadherin and downregulation of mesenchymal markers, N-cadherin and vimentin. Furthermore, the levels of miR-138 were inversely correlated with those of SOX4 expression in GC tissues. Overexpression of SOX4 rescued the inhibition effect in GC cells caused by miR-138. Collectively, these findings indicate that miR-138 may be a potential therapeutic target for GC.

Publication types

  • Retracted Publication

MeSH terms

  • Animals
  • Apoptosis
  • Biomarkers, Tumor / genetics
  • Biomarkers, Tumor / metabolism*
  • Cell Movement
  • Cell Proliferation
  • Follow-Up Studies
  • Gene Expression Regulation, Neoplastic*
  • Humans
  • Lymphatic Metastasis
  • Male
  • Mice
  • Mice, Inbred BALB C
  • Mice, Nude
  • MicroRNAs / genetics*
  • Prognosis
  • SOXC Transcription Factors / genetics
  • SOXC Transcription Factors / metabolism*
  • Stomach Neoplasms / genetics
  • Stomach Neoplasms / metabolism
  • Stomach Neoplasms / pathology*
  • Tumor Cells, Cultured
  • Xenograft Model Antitumor Assays

Substances

  • Biomarkers, Tumor
  • MIRN138 microRNA, human
  • MicroRNAs
  • SOX4 protein, human
  • SOXC Transcription Factors