The core-fucosylated (CF) glycoproteins are widely distributed in mammalian tissues and regulated under pathological conditions, especially in cancer progression. The Food and Drug Administration (FDA) has approved the core-fucosylated α-fetoprotein as a biomarker for the early diagnosis of hepatocellular carcinoma (HCC). An approach for identifying CF glycoproteins has significantly practical value. Here we introduce a novel method for identification of CF glycoproteome in human plasma. The method integrates tandem glycopeptide enrichment, stepped fragmentation, and "glycan diagnostic ion"-based spectrum refinement. With this method, the productivity of identifying CF glycopeptides will be significantly improved. We anticipate that this method could be widely utilized to explore the CF glycoproteins and their regulation under physiological or pathological condition.
Keywords: Core fucosylation; Glycoproteomics; HILIC; Human plasma; Lectin affinity; Mass spectrometry; Stepped fragmentation.