A mechanistic study of a new heterocycloisomerization reaction that forms annulated aminopyrroles is presented. Density functional theory calculations and kinetic studies suggest the reaction is catalyzed by trace copper salts and that a Z- to E-hydrazone isomerization occurs through an enehydrazine intermediate before the rate-determining cyclization of the hydrazone onto the alkyne group. The aminopyrrole products are obtained in 36-93% isolated yield depending on the nature of the alkynyl substituent. A new automated sampling technique was developed to obtain robust mechanistic data.