Subclinical hypothyroidism is caused by thyroid hormone deficit and can lead to impairments in mood and cognition. In brain, supply with thyroxine (T4) is mediated by thyroid hormone transporters including the brain-specific anion transporter-1 (BSAT-1). In humans and rodents, BSAT-1 is expressed in brain microvessels and astrocytes. In this study, we tested whether exposure in utero with BSAT-1-specific monoclonal antibodies (MabBSAT) will affect the cognitive function of the progeny. On gestation day 16th, females were intravenously treated with MabBSAT, non-specific antibodies (control 1), and saline (control 2). 72h after injection, MabBSAT were still detectable in the rat brain while non-specific antibodies were found. Immunocytochemistry showed that MabBSAT can bind to cultured primary cerebrovascular rat cells. At the age of 1month, the progeny was subjected to the Y-maze test, novel object recognition test, passive avoidance test, and Morris water maze, which revealed significant impairments in the cognitive function in the MabBSAT-exposed progeny compared to both control progeny groups. Therefore, prenatal exposure to MabBSAT blocks brain BSAT-1 and limits T4 influx to the brain. This impairs the cognitive function in exposed progeny in the post-natal life.
Copyright © 2017 Elsevier Ltd. All rights reserved.