A Lithium Ion Highway by Surface Coordination Polymerization: In Situ Growth of Metal-Organic Framework Thin Layers on Metal Oxides for Exceptional Rate and Cycling Performance

Chemistry. 2017 Aug 25;23(48):11513-11518. doi: 10.1002/chem.201703016. Epub 2017 Aug 3.

Abstract

A thin layer of a highly porous metal-organic framework material, ZIF-8, is fabricated uniformly on the surface of nanostructured transition metal oxides (ZnO nanoflakes and MnO2 nanorods) to boost the transfer of lithium ions. The novel design and uniform microstructure of the MOF-coated TMOs (ZIF-8@TMOs) exhibit dramatically enhanced rate and cycling performance comparing to their pristine counterparts. The capacities of ZIF-8@ZnO (nanoflakes) and ZIF-8@MnO2 (nanorods) are 28 % and 31 % higher that of the pristine ones at the same current density. The nanorods of ZIF-8@MnO2 show a capacity of 1067 mAh g-1 after 500 cycles at 1 Ag-1 and without any fading. To further improve the conductivity and capacity, the ZIF-8-coated materials are pyrolyzed at 700 °C in an N2 atmosphere (ZIF-8@TMO-700 N). After pyrolysis, a much higher capacity improvement is achieved: ZIF-8@ZnO-700 N and ZIF-8@MnO2 -700 N have 54 % and 69 % capacity increases compared with the pristine TMOs, and at 1 Ag-1 , the capacity of ZIF-8@MnO2 -700 N is 1060 mAh g-1 after cycling for 300 cycles.

Keywords: anode materials; lithium ion batteries; metal oxides; metal-organic frameworks; surface coordination polymerization.