Human coronin 3 is involved in many types of cancers, but the underlying molecular mechanisms require further elucidation. The present study demonstrated that coronin 3 is significantly upregulated in clinical primary hepatocellular carcinoma (HCC) samples by reverse transcription‑quantitative polymerase chain reaction (RT‑qPCR) and immunohistochemical staining. Subsequently, proteins that were regulated by coronin 3 in both coronin 3 overexpressing or knocked down HepG2 cells were analyzed by label free mass spectrometry; overall, 249 proteins were identified to be closely regulated by coronin 3, and those coronin 3 regulated proteins were enriched in cellular, physiological and metabolism processes. By further in‑depth pathway analysis, it was demonstrated that those proteins were involved into 94 different pathways. Finally, the expression levels of glucose‑6‑phosphatase catalytic subunit 3 (G6PC3) were confirmed to be negatively regulated by coronin 3, as determined by RT‑qPCR and western blotting. In conclusion, these results indicated that coronin3 is significantly dysregulated in HCC tumor tissues, and may exert its function via regulating G6PC3 expression. These results provide valuable information for further study of coronin 3‑mediated signaling pathways, and implicate coronin 3 as a potential therapeutic target for HCC.