Pdgfrα functions in endothelial-derived cells to regulate neural crest cells and the development of the great arteries

Dis Model Mech. 2017 Sep 1;10(9):1101-1108. doi: 10.1242/dmm.029710. Epub 2017 Jul 14.

Abstract

Originating as a single vessel emerging from the embryonic heart, the truncus arteriosus must septate and remodel into the aorta and pulmonary artery to support postnatal life. Defective remodeling or septation leads to abnormalities collectively known as conotruncal defects, which are associated with significant mortality and morbidity. Multiple populations of cells must interact to coordinate outflow tract remodeling, and the cardiac neural crest has emerged as particularly important during this process. Abnormalities in the cardiac neural crest have been implicated in the pathogenesis of multiple conotruncal defects, including persistent truncus arteriosus, double outlet right ventricle and tetralogy of Fallot. However, the role of the neural crest in the pathogenesis of another conotruncal abnormality, transposition of the great arteries, is less well understood. In this report, we demonstrate an unexpected role of Pdgfra in endothelial cells and their derivatives during outflow tract development. Loss of Pdgfra in endothelium and endothelial-derived cells results in double outlet right ventricle and transposition of the great arteries. Our data suggest that loss of Pdgfra in endothelial-derived mesenchyme in the outflow tract endocardial cushions leads to a secondary defect in neural crest migration during development.

Keywords: Cardiogenesis; Endothelium; Neural crest; Outflow tract; Pdgfrα.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Arteries / embryology*
  • Arteries / metabolism*
  • Embryo, Mammalian / abnormalities
  • Embryo, Mammalian / pathology
  • Endothelial Cells / metabolism*
  • Endothelium, Vascular / metabolism
  • Female
  • Gene Deletion
  • Genotype
  • Male
  • Mesoderm / metabolism
  • Mice
  • Neural Crest / cytology*
  • Neural Crest / metabolism*
  • Receptor, Platelet-Derived Growth Factor alpha / metabolism*

Substances

  • Receptor, Platelet-Derived Growth Factor alpha