Purpose: To investigate the incorporation of functional lung image-derived low-attenuation area (LAA) based on 4-dimensional computed tomography (4D-CT) in volumetric modulated arc therapy (VMAT) planning for patients with malignant pleural mesothelioma (MPM) after extrapleural pneumonectomy.
Methods and materials: Twelve patients with MPM after extrapleural pneumonectomy were included. The primarily affected side was the right in 6 patients and the left in 6 patients. LAA was generated from 4D-CT data according to CT values with a threshold of less than -860 Hounsfield units (HU). Functional lung image was defined as the area where LAA was excluded from contralateral lung image. Two radiation therapy plans were designed: (1) Plan C, conventional VMAT and (2) Plan F, functional VMAT plan based on the functional lung. Both plans were compared in each patient with respect to the following dosimetric parameters: fV20, V20, fV10, V10, fV5, and V5, the percentages of functional or contralateral lung volumes irradiated with >20 Gy, 10 Gy, or 5 Gy, respectively; functional mean lung dose (fMLD) and mean lung dose (MLD), the mean dose to the functional or contralateral lung, respectively; maximum dose to the cord; mean doses to the liver and heart; and planning target volume homogeneity index.
Results: fV5 and MLD were significantly lower in Plan F (fV5, median 57.5% in Plan C vs 38.5% in Plan F, P < .01; MLD, median 7.0 Gy in Plan C vs 6.4 Gy in Plan F, P = .04). fV10, V5, and fMLD were also significantly lower in Plan F. Compared with Plan C, planning target volume homogeneity index and liver, heart, and cord doses were not significantly elevated in Plan F.
Conclusions: Significant reductions in fV5, fV10, fMLD, V5, and MLD were achieved with the functional image guided VMAT plan without negative effects on other factors. LAA-based functional image guided radiation therapy planning in VMAT is a feasible method to spare the functional lung in patients with MPM.
Keywords: 4-dimensional computed tomography; Functional imaging; image guided radiation therapy.