Hydro- and oleophobic (namely, omniphobic) coatings or surfaces have many important applications, but tremendous challenges in fabrication aspects still remain. Herein, we report a bioinspired design and nanofabrication of three-dimensional (3D) tribrachia-post arrays with re-entrant geometry (3D TPARG) for superhydrophobic and oleophobic polymer films or surfaces. By simply controlling the temperatures and time to treat silica colloidal templates, we can readily fabricate 3D ordered polymer arrays of tribrachia-posts or hexagonal tribrachia-posts with re-entrant geometries that resemble the skin of a springtail insect after the template is removed. These polymer surfaces exhibit excellent and self-healing superhydrophobicity and oleophobicity even against temperature, acids, alkalis, and mechanical damage. Moreover, their liquid-infused nanostructured surfaces still display very good liquid-sliding ability for water and oils. Our 3D TPARG design strategy may help the development of omniphobic polymer coatings or surfaces for practical applications in self-cleaning surfaces, liquid transport, antifouling materials, and many other important fields.
Keywords: coatings; colloidal spheres; omniphobic; re-entrant geometry; tribrachia-post arrays.