Purpose: Ionizing radiation (IR) treatment activates inflammatory processes causing the release of a great amount of molecules able to affect the cell survival. The aim of this study was to analyze the cytokine signature of conditioned medium produced by non-tumorigenic mammary epithelial cell line MCF10A, as well as MCF7 and MDA-MB-231 breast cancer cell lines, after single high doses of IR in order to understand their role in high radiation response.
Materials and methods: We performed a cytokine profile of irradiated conditioned media of MCF10A, MCF7 and MDA-MB-231 cell lines treated with 9 or 23 Gy, by Luminex and ELISA analyses.
Results: Overall, our results show that both 9 Gy and 23 Gy of IR induce the release within the first 72 h of cytokines and growth factors potentially able to influence the tumor outcome, with a dose-independent and cell-line dependent signature. Moreover, our results show that the cell-senescence phenomenon does not correlate with the amount of 'senescence-associated secretory phenotype' (SASP) molecules released in media. Thus, additional mechanisms are probably involved in this process.
Conclusions: These data open the possibility to evaluate cytokine profile as useful marker in modulating the personalized radiotherapy in breast cancer care.
Keywords: Ionizing radiation; breast cancer; cytokines; inflammation.