Accumulating evidence suggests a role of the ephrin receptor EphA4 and the downstream protein ephexin1 in synaptic plasticity, which is implicated in depression. We examined whether EphA4-ephexin1 signaling plays a role in the pathophysiology of depression, and the antidepressant-like effect of EphA4 inhibitor rhynchophylline. We found increased ratios of p-EphA4/EphA4 and p-ephexin1/ephexin1 in the prefrontal cortex (PFC) and hippocampus but not in the nucleus accumbens (NAc), of susceptible mice after social defeat stress. Furthermore, the p-EphA4/EphA4 ratio was higher in the parietal cortex of depressed patients compared with controls. Systemic administration of rhynchophylline, produced a rapid antidepressant-like effect in a social defeat stress model by inhibiting EphA4-ephexin1 signaling and activating brain-derived neurotrophic factor-TrkB signaling in the PFC and hippocampus. Pretreatment with rhynchophylline before each social defeat stress could prevent the onset of the depression-like phenotype after repeated social defeat stress. Overexpression of EphA4 in the medial PFC owing to infection with an EphA4 adeno-associated virus caused the depression-like phenotype 3 weeks later and rhynchophylline had a rapid antidepressant-like effect in these mice. These findings suggest that increased EphA4-ephexin1 signaling in the PFC plays a role in the pathophysiology of depression.