Objectives: The aim of this study was to analyze whether scar characterization could improve the risk stratification for life-threatening ventricular arrhythmias and sudden cardiac death (SCD).
Background: Among patients with a cardiac resynchronization therapy (CRT) indication, appropriate defibrillator (CRT-D) therapy rates are low.
Methods: Primary prevention patients with a class I indication for CRT were prospectively enrolled and assigned to CRT-D or CRT pacemaker according to physician's criteria. Pre-procedure contrast-enhanced cardiac magnetic resonance was obtained and analyzed to identify scar presence or absence, quantify the amount of core and border zone (BZ), and depict BZ distribution. The presence, mass, and characteristics of BZ channels in the scar were recorded. The primary endpoint was appropriate defibrillator therapy or SCD.
Results: 217 patients (39.6% ischemic) were included. During a median follow-up of 35.5 months (12 to 62 months), the primary endpoint occurred in 25 patients (11.5%) and did not occur in patients without myocardial scar. Among patients with scar (n = 125, 57.6%), those with implantable cardioverter-defibrillator (ICD) therapies or SCD exhibited greater scar mass (38.7 ± 34.2 g vs. 17.9 ± 17.2 g; p < 0.001), scar heterogeneity (BZ mass/scar mass ratio) (49.5 ± 13.0 vs. 40.1 ± 21.7; p = 0.044), and BZ channel mass (3.6 ± 3.0 g vs. 1.8 ± 3.4 g; p = 0.018). BZ mass (hazard ratio: 1.06 [95% confidence interval: 1.04 to 1.08]; p < 0.001) and BZ channel mass (hazard ratio: 1.21 [95% confidence interval: 1.10 to 1.32]; p < 0.001) were the strongest predictors of the primary endpoint. An algorithm based on scar mass and the absence of BZ channels identified 148 patients (68.2%) without ICD therapy/SCD during follow-up with a 100% negative predictive value.
Conclusions: The presence, extension, heterogeneity, and qualitative distribution of BZ tissue of myocardial scar independently predict appropriate ICD therapies and SCD in CRT patients.
Keywords: cardiac resynchronization therapy; magnetic resonance imaging; sudden cardiac death; ventricular arrhythmias.
Copyright © 2018 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.