Maintenance of phenotypic heterogeneity within cell populations is an evolutionarily conserved mechanism that underlies population survival upon stressful exposures. We show that the genomes of a cancer cell subpopulation that survives treatment with otherwise lethal drugs, the drug-tolerant persisters (DTPs), exhibit a repressed chromatin state characterized by increased methylation of histone H3 lysines 9 and 27 (H3K9 and H3K27). We also show that survival of DTPs is, in part, maintained by regulators of H3K9me3-mediated heterochromatin formation and that the observed increase in H3K9me3 in DTPs is most prominent over long interspersed repeat element 1 (LINE-1). Disruption of the repressive chromatin over LINE-1 elements in DTPs results in DTP ablation, which is partially rescued by reducing LINE-1 expression or function.
Keywords: ATRX; G9a; H3.3; H3K9-methylation; HDACs; HP1γ; LINE-1; SETDB1; cancer cell heterogeneity; chromatin.
Copyright © 2017 Elsevier Inc. All rights reserved.