Design of iodine absorption cell for high-spectral-resolution lidar

Opt Express. 2017 Jul 10;25(14):15913-15926. doi: 10.1364/OE.25.015913.

Abstract

Iodine absorption cells are extensively employed by high-spectral-resolution Lidars (HSRLs) for aerosol optical properties and atmosphere state parameters profiling. To the best of our knowledge, the optimal design of the parameters of iodine cells has not been talked about systematically. In this paper, a heuristic method based on multi-objective concept is proposed for the design of iodine cells employed in HSRLs for aerosol profiling, and the method can be also applied to different types of HSRLs. The bi-objective model is established based on the retrieval error analysis of HSRL and then the Pareto optimal solutions are obtained through the Non-dominated Sorting Genetic Algorithm II (NSGA-II). The performance of different absorption lines are compared according to the Pareto solution sets, and the stability of transmittance characteristics of different absorption lines are discussed through sensitivity analysis. The results are expected to provide guidance for the design of HSRLs based on iodine absorption filters.