Staphylococcus epidermidis has emerged as an important opportunistic pathogen causing orthopedic-device-related infections (ODRI). This study investigated the association of genome variation and phenotypic features of the infecting S. epidermidis isolate with the clinical outcome for the infected patient. S. epidermidis isolates were collected from 104 patients with ODRI. Their clinical outcomes were evaluated, after an average of 26 months, as either "cured" or "not cured." The isolates were tested for antibiotic susceptibility and biofilm formation. Whole-genome sequencing was performed on all isolates, and genomic variation was related to features associated with "cured" and "not cured." Strong biofilm formation and aminoglycoside resistance were associated with a "not-cured" outcome (P = 0.031 and P < 0.001, respectively). Based on gene-by-gene analysis, some accessory genes were more prevalent in isolates from the "not-cured" group. These included the biofilm-associated bhp gene, the antiseptic resistance qacA gene, the cassette chromosome recombinase-encoding genes ccrA and ccrB, and the IS256-like transposase gene. This study identifies biofilm formation and antibiotic resistance as associated with poor outcome in S. epidermidis ODRI. Whole-genome sequencing identified specific genes associated with a "not-cured" outcome that should be validated in future studies. (The study has been registered at ClinicalTrials.gov with identifier NCT02640937.).
Keywords: MRSE; Staphylococcus epidermidis; antibiotic resistance; genotype; orthopedic-device-related infections; phenotype; virulence factors.
Copyright © 2017 American Society for Microbiology.