Insulin-producing cells derived from 'induced pluripotent stem cells' of patients with fulminant type 1 diabetes: Vulnerability to cytokine insults and increased expression of apoptosis-related genes

J Diabetes Investig. 2017 Aug 10;9(3):481-493. doi: 10.1111/jdi.12727. Online ahead of print.

Abstract

Aims/introduction: The present study was carried out to generate induced pluripotent stem cells (iPSCs) from patients with fulminant type 1 diabetes, and evaluate the cytokine-induced apoptotic reactions of β-like insulin-producing cells differentiated from the iPSCs.

Materials and methods: iPSCs were generated from fibroblasts of patients with fulminant type 1 diabetes by inducing six reprogramming factors. Insulin-producing cells were differentiated from the iPSCs in vitro. The proportion of cleaved caspase-3-positive or terminal deoxynucleotidyl transferase 2'-deoxyuridine, 5'-triphosphate nick end labeling-positive cells among insulin (INS)-positive cells derived from fulminant type 1 diabetes iPSC and control human iPSC lines was evaluated under treatment with tumor necrosis factor-α, interleukin-1β and interferon-γ. Ribonucleic acid sequencing was carried out to compare gene expressions in INS-positive cells derived from fulminant type 1 diabetes iPSC and control human iPSC lines.

Results: Two iPSC clones were established from each of three patients with fulminant type 1 diabetes. The differentiation of insulin-producing cells from fulminant type 1 diabetes iPSC was confirmed by immunofluorescence analysis and KCl-induced C-peptide secretion. After treatment with pro-inflammatory cytokines, these INS-positive cells showed higher expression of cleaved caspase-3 than those derived from control human iPSCs. Altered expression levels of several apoptosis-related genes were observed in INS-positive cells derived from the fulminant type 1 diabetes iPSCs by ribonucleic acid sequencing.

Conclusions: We generated iPSCs from patients with fulminant type 1 diabetes and differentiated them into insulin-producing cells. This in vitro disease model can be used to elucidate the disease mechanisms of fulminant type 1 diabetes.

Keywords: Fulminant type 1 diabetes; Induced pluripotent stem cell; β-Cell.