Current antivirals effectively target diverse viruses at various stages of their life cycles. Nevertheless, curative therapy has remained elusive for important pathogens, such as human immunodeficiency virus type 1 (HIV-1) and herpesviruses, in large part due to viral latency and the evolution of resistance to existing therapies. Here, we review the discovery of viral master circuits: virus-encoded autoregulatory gene networks that autonomously control viral expression programs (i.e., between active, latent, and abortive fates). These circuits offer the opportunity for a new class of antivirals that could lead to intrinsic combination-antiviral therapies within a single molecule-evolutionary escape from such circuit-disrupting antivirals would require simultaneous evolution of both the viral cis regulatory element (e.g., the DNA-binding site) and the trans element (e.g., the transcription factor) in order for the virus to recapitulate a circuit that would not be disrupted. We review the architectures of these fate-regulating master circuits in HIV-1 and the human herpesvirus cytomegalovirus along with potential circuit-disruption strategies that may ultimately enable escape-resistant antiviral therapies.
Keywords: CMV; HIV; autoregulatory circuits; fate regulation; feedback; latency; stochastic noise; transcription; transcriptional fluctuations.