Enhancing Immune Responses to Cancer Vaccines Using Multi-Site Injections

Sci Rep. 2017 Aug 16;7(1):8322. doi: 10.1038/s41598-017-08665-9.

Abstract

For a vaccine to be effective it must induce a sufficiently robust and specific immune response. Multi-site injection protocols can increase the titers of rabies virus-neutralizing antibodies. Hypothetically, spreading a vaccine dose across multiple lymphatic drainage regions could also potentiate T cell responses. We used a replication-deficient adenovirus serotype 5-vectored cancer vaccine targeting the melanoma-associated antigen dopachrome tautomerase. Clinically, high numbers of tumor-infiltrating CD8+ T cells are a positive prognostic indicator. As such, there is interest in maximizing tumor-specific T cell responses. Our findings confirm a positive correlation between the number of tumor-specific T cells and survival. More importantly, we show for the first time that using multiple injection sites could increase the number of vaccine-induced CD8+ T cells specific for a self-tumor antigen. Further, the number of tumor antigen-specific antibodies, as well CD8+ T cells specific for a foreign antigen could also be enhanced. Our results show that multi-site vaccination induces higher magnitude immune responses than a single-bolus injection. This provides a very simple and almost cost-free strategy to potentially improve the efficacy of any current and future vaccine. Broader clinical adoption of multi-site vaccination protocols for the treatment of cancers and infectious diseases should be given serious consideration.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Antibodies, Viral / immunology
  • Antigens, Neoplasm
  • Cancer Vaccines / administration & dosage
  • Cancer Vaccines / immunology*
  • Cell Line, Tumor
  • Disease Models, Animal
  • Female
  • Humans
  • Immunity*
  • Immunogenicity, Vaccine*
  • Immunomodulation*
  • Melanoma, Experimental
  • Mice
  • T-Lymphocytes / immunology
  • T-Lymphocytes / metabolism

Substances

  • Antibodies, Viral
  • Antigens, Neoplasm
  • Cancer Vaccines

Grants and funding