Background: Clinical and experimental analyses have identified a central role for IgE/FcεRI/mast cells in promoting IgE-mediated anaphylaxis. Recent data from human studies suggest that bacterial infections can alter susceptibility to anaphylaxis.
Objective: We examined the effect of LPS exposure on the induction of IgE-mast cell (MC) mediated reactions in mice.
Methods: C57BL/6 WT, tlr4-/- and IL10-/- mice were exposed to LPS, and serum cytokines (TNF and IL-10) were measured. Mice were subsequently treated with anti-IgE, and the symptoms of passive IgE-mediated anaphylaxis, MC activation, Ca2+ -mobilization and the expression of FcεRI on peritoneal MCs were quantitated.
Results: We show that LPS exposure of C57BL/6 WT mice constraints IgE-MC-mediated reactions. LPS-induced suppression of IgE-MC-mediated responses was TLR-4-dependent and associated with increased systemic IL-10 levels, decreased surface expression of FcεRI on MCs and loss of sensitivity to IgE activation. Notably, LPS-induced desensitization of MCs was short term with MC sensitivity to IgE reconstituted within 48 hours, which was associated with recapitulation of FcεRI expression on the MCs. Mechanistic analyses revealed a requirement for IL-10 in LPS-mediated decrease in MC FcεRI surface expression.
Conclusions & clinical relevance: Collectively, these studies suggest that LPS-induced IL-10 promotes the down-regulation of MC surface FcεRI expression and leads to desensitization of mice to IgE-mediated reactions. These studies indicate that targeting of the LPS-TLR-4-IL-10 pathway may be used as a therapeutic approach to prevent adverse IgE-mediated reactions.
Keywords: IgE; anaphylaxis; innate immunity and TLR-4 signalling; mast cells.
© 2017 John Wiley & Sons Ltd.