Background: Posterior fossa decompression surgeries for Chiari malformations are susceptible to postoperative complications such as pseudomeningocele, external cerebrospinal fluid (CSF) leak, and meningitis. Various dural substitutes have been used to improve surgical outcomes.
Objective: This study examined whether the collagen matrix dural substitute type correlated with the incidence of postoperative complications after posterior fossa decompression in adult patients with Chiari I malformations.
Methods: A retrospective cohort study was conducted of 81 adult patients who underwent an elective decompressive surgery for treatment of symptomatic Chiari I malformations, with duraplasty involving a dural substitute derived from either bovine or porcine collagen matrix. Demographics and treatment characteristics were correlated with surgical outcomes.
Results: A total of 81 patients were included in the study. Compared with bovine dural substitute, porcine dural substitute was associated with a significantly higher risk of pseudomeningocele occurrence (odds ratio, 5.78; 95% confidence interval, 1.65-27.15; P = 0.01) and a higher overall complication rate (odds ratio, 3.70; 95% confidence interval, 1.23-12.71; P = 0.03) by univariate analysis. There was no significant difference in the rate of meningitis, repeat operations, or overall complication rate between the 2 dural substitutes. In addition, estimated blood loss was a significant risk factor for meningitis (P = 0.03). Multivariate analyses again showed that porcine dural substitute was associated with pseudomeningocele occurrence, although the association with higher overall complication rate did not reach significance.
Conclusions: Dural substitutes generated from porcine collagen, compared with those from bovine collagen, were associated with a higher likelihood of pseudomeningocele development in adult patients undergoing Chiari I malformation decompression and duraplasty.
Keywords: Chiari malformation; Dural substitute; Duraplasty; Posterior fossa surgery.
Copyright © 2017 Elsevier Inc. All rights reserved.